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Inverse heat-conduction (IHC) methods are used extensively to solve problems in the diagnosis and identification of 

heat-transfer processes from experimental results [1-4]. However, methods for the solution of one-dimensional IHC problems 
may have been studied more or less completely so far, but methods for the solution of nonlinear two-dimensional and three- 

dimensional IHC methods are in need of further refinement. The current literature is devoted mainly to the solution of linear 

two-dimensional IHC boundary-value problems. The best-known results in this area have been obtained by O. M. Alifanov 

et al., who have developed an iterative regularization method. Two- and three-dimensional IHC problems are formulated in 
[1], where a method is also proposed for the iterative solution of the linear two-dimensional inverse problem in an extremal 

setting for bodies in the form of flat plates, admitting generalization to other geometries. Alifanov and Kerov [5, 6] discuss 
a procedure and algorithm for the iterative solution of the linear two-dimensional IHC problem with finite-difference 

approximation of the heat-conduction boundary-value problem in the case of a hollow circular cylinder and a cylindrical copper 
shell, and they give the results of a methodological study of their algorithm. This approach has been elaborated [7] in 
application to the integral form of the two-dimensional problem with constant thermophysical coefficients. A major 

breakthrough in regard to the iterative regularization method is reported in [8], where the method is used to construct an 

algorithm for solving the three-dimensional inverse boundary-value problem for a multilayered, hollow, spherical segment. 

Unfortunately, the proposed algorithm has not been checked out numerically in [8]. 
In implementing the iterative regularization method, the greatest difficulties are encountered in calculating the gradient 

of the objective functional. This procedure requires considerable ingenuity on the part of the investigator and can pose an almost 

intractable problem for complex mathematical models. Numerical regularizing methods could be useful for solving the inverse 
problem in the given situation. A Tikhonov-regularizing algorithm has been proposed [9] for the numerical solution of the 
nonlinear, one-dimensional IHC problem. This algorithm has subsequently been elaborated and used [10-13] to solve specific 
problems in the mechanics of reacting media. 

In this article we generalize the one-dimensional regularizing algorithm to the two-dimensional case. We investigate 

the influence of heat flow on the accuracy of determination of temperature and heat flux density by IHC methods. We also 
demonstrate the influence of initial data error on the solution of the inverse problem. 

1. Physical and Mathematical Statements of the Inverse Problem. We formulate the IHC problem for a body of 

rectangular cross section (Fig. 1). We assume that the heat flux vector is parallel to the xy plane at every point in space. Heat 
transfer takes place in the planes x = 0, x = b, and y = d, being specified by boundary conditions of the Dirichlet, Neumann, 

or Cauchy type. It is required to determine the heat flux density qw (x, y) and the temperature T w (x, t) at the boundary (wall) 
y = 0 from the known temperature at the line y = c. 

This IHC problem is stated mathematically in the form 

C(T) ot - Ox ~(T) + ~-~y (7") ~ , (1.I) 

0 < x <  b, 0 <  y <  d, t b < t ~  tf; 

T(x, y, tb) = rb(x, y), 0 '~ X '~ /,, 0 '~ y ~ d; (1.2) 
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ra(Y, 0 aT(O, y, t) (1.3) - -  + ra(y, t)T(O, y, t) = r3(y , t); 
b x  

aT(b, y, t) + s2(Y'  t)T(b, y, t) = s3(y , t); (1.4) 

gl(x, t) aT(x, d, t) + g2( x, t )T(x,  d, t) = g3(x, t); (1.5) 
ay 

T(x,  c, 0 = T ( x ,  t), 0 g x g b, 0 g y g d,  t b ~ t ~ tf ; (1.6) 

aT(x, O, t) ~ (1.7) q.(x, 0 = - a ( r ( x ,  o,  0 )  a-----S--- " 

Here  T is the temperature ,  x and y are the space coordinates,  t is the time, C is the volumetric heat capaci ty,  )~x and ~ky are 

the thermal  conductivities in the x and y directions, and r 1 , r 2 , r 3 , s 1 , s 2 , s 3 , g l ,  g2, and g3 are coefficients characterizing 

the type of  boundary conditions at the boundaries of  the rectangular domain.  For  example,  if  r 1 = s 1 = g l  = 1 and r 2 = 

r3 = s2 = s3 = g2 = g3 = 0, adiabatic conditions prevail  at the boundaries x = 0, x = b, and y = d. Subscripts:  b) initial 

state; f) final state; w) heated boundary y = 0; c) interior line y = c. 

2. A l g o r i t h m  fo r  Solving the  Inve r se  P r o b l e m .  The solution of  the inverse problem is divided into two stages. In 

the first stage k is reduced to the Cauchy problem. The initial condition (1.2) and the boundary conditions (1.3)-(1.6) in the 

domain D 2 {0 <- x ~ b, c _< y <__ d, t b -< t < tf} are used to find the temperature field and, as a result,  the heat flux density 

qc(x,  t) = -} ,yT(X,  c,  t)0T(x,  c, t)/0y on the line y = c. This is a weU-studied two-dimensional  boundary-value  problem,  

which can be solved by  any standard numerical  method, for example,  the decoupling method [14]. The one-dimensional  heat- 

conduction equations obtained by decoupling in each time half-step are efficiently solved by an iterative interpolation method 

[4]. In the second stage the inverse problem of  determining the temperature field and the functions T w (x, t) = T(x,  0, t) and 

qw(X, t) = - X y T ( x ,  0, 0aT(x ,  0, t ) /ay from the known initial condition (1.2), the boundary conditions (1.3) and (1.4), and 

the functions Tc(x,  t) and qc(x,  t) is solved in the domain D 1 (0 < x < b, 0 __< y < c, t b -< t _ tf): 

C(T) at-a~ ,(73 +Ty (T)~ , 

O<x< b,O< y<c, ib <t<~tr; 

(2.1) 

T ( x , y , O )  = T b ( x , y ) , 0  ~ x ~  b, 0 ~ y ~  c; (2.2) 

r1(y, t) - -  
aT(o, y, t) 

ax 
+ r2(r, 07"(0, y, t) = q(y,  t); (2.3) 

s l (r ,  0 - -  
ar(b. y, t) 

ax 
+ s2(y, 0 r ( b ,  y, 0 = s3(y, t); 

at(x, c. 0 
- ; t ( r ( x ,  c, 0)  a-----V-- - q~(x, 0;  

(2.4) 

(2.5) 

T(gc, C,t) = Zc(x , t ) ,  0 ~ x ~ b, 0 ~ y ~ c,  t b ~ t ~ 1 b . (2.6) 

We introduce the differencing grid 

h ,  h ,  ht(x ~ = h J ,  l = 0, L; yf = hTk, k = 0, K; tj = h,j, j = 0, M) ,  (2.7) 
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Fig. 1 

where h x , hy, and h z are the steps (increments) of  the variables x, y, and t, respectively. To obtain the differencing scheme, 

we approximate the derivatives in the form 

I , k+l  - -  Ti, k + l  l ,k+2 I,k 

t ~, ), . , .~ ~ , ~ ~ ),, ,  2,,  , 
r l' " -" )' - t + l . k + t  - -  t - L t + l  a 8 T  

Vx),.,+, 2~ ' ~  ~ ,.,+-- 
t [(~'~,k+z + " , 

Y 

• (T:.,§ - T/,)1, ~ Ia ~ ) ' 1 
. -S t,,~x ,- ~ t(x,.,+,.,.~ + .a',,.,,+~> 

l,k+l 

- -  , . T ; - L k + X )  ]" "~,~-L ,,+ x) x (T;+~,,+~ 

(2.8) 

As a result, we obtain a nonlinear recursive relation for determining the temperature at the (I, k)-th spatial node: 

�9 y J ~.,T~., = F~,,, l =  1, L -  1, j =  1, M. (2.9) 

Here 

X + ~ ~,+1 ~-1 ~ , :  /o,+I / , k ; ~ j  = ~ + 1  ' - T i ' ~ + 1  
2,2 ,. ,  . , ,  

1 
[ ( ~ / + l , k + L  

I 
x (T2t+t - T]_t.k+1)] -- ~ [(2.~,,+ 2 + ~.t+1) (T2k+2 -- T2k§ 

Y 

- (,t~.~+~ + ,l.~.~)T~+~). 

The nonlinear equation (2.9) interrelates the k-th, (k + 1)-st, and (k + 2)-nd spatial lines. To begin the computational 

process, it is necessary to know the temperature on the K-th and (K - 1)-st lines. The temperature on the K-th line is given 

by the experimental function T c (x, t) from condition (2.6), and the temperature on the (K - 1)-st line is determined from the 

finite-difference analog of Eq. (2.5). Unless regularizers of some kind are introduced, Eq. (2.9) implements one of several 
direct numerical methods for the solution of IHC problems. In this case the temperature obtained in the k-th step is improved 

by iterations on the coefficients. Equation (2.9) can be used to obtain a regular solution of the inverse problem when the input 
temperature T c (x, t) has small fluctuation errors and the integration step with respect to the time h t is sufficiently large. If  the 

errors of the input temperature and the time step do not meet these restrictions, problem (2.9) does not give a stable solution. 

The capabilities of  direct numerical methods can be extended by smoothing the input temperature. 
Thus, when the direct numerical method is stable, a solution of the IHC problem cannot be obtained, and regularizing 

methods must be used. 
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For Eq. (2.9) we write the Tikhonov functional in the form 

u ak  u 
@ , . k ( a ) =  j _ j 2 "-"1 J _ " r ~ - h  ~ + 

1-1 t j-1 

a k  2 u-l~ ( T  1+1 -- 2T~(k + .- x '  ,.-r:k'~ 2 + , % c L ,  z =  1, L - i ,  
h4 ~,- l,k 

t j - I  

(2.10) 

where = is a regularization parameter, k I > 0 and k 2 > 0 are nonnegative numbers, and C M = 32T/,k(tk)/0t 2 �9 

Minimizing Eq. (2.10) over all "14/,k( j = TSSS~),  we obtain a system of nonlinear algebraic equations with a 

symmetric, five-diagonal, positive definite matrix for finding a regularized solution at the (l, k)-th spatial node: 

j + 2  

E ~,,~,k =h' ] ' -  1 , M , / =  1 ,  L -  1.  
, - j - 2  

(I~i~M) 

(2.11) 

Here 
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I , I  

kt k2) 
+ ~ 2 7 + 

i 
kl k2 t ( ~ . , r  + " 2 ~ + 6 h ~  , 

' k l  ~ )  

kl k-~t~) 
i(~,.,) = + = ~ + , / =  

j =  1, 

1=2,  M - 2 ,  

, j =  M -  1, 

M; 

[ - a / ~  + 4-~t~), . /=  1, M -  2, 

- a  + 2  , ]  M -  1; 

% . ,  = % , . j  = ,~ ~,, ./= ~, ~ - 2; 

-= B~.~F;., + Tbtaa kl k2 

k: 

= ~,,~.,. J / = 3 .  M - 2; 

k 2 /,,, , = ~ - 1 ~ - ~  _ , ,  ~ c , , ;  - t,k l,k 

k 2 
bu= B~l.j,l~t.~ + 2a'~C u. 

The system (2.11) is solved by a nonmonotonic double-sweep (modified Gaussian elimination) procedure [15] with 
iterations on the coefficients. The iterative process is terminated when the error ~ falls within predetermined limits. The solution 

of the system (2.11) for a fixed regularization parameter c~ gives the required regularized temperature profile T2k (j = 
T'5"7:--~. Once the temperature on the k-th line has been determined from Eq. (2.11), the transition is made to the (k - D-st 
line, etc., until the temperature on the line y = 0 is found. The temperature at the boundaries x = 0 and x = b of the domain 
D 1 is determined from the f'mite-difference approximation of the boundary conditions (2.3) and (2.4) using the previously 
determined temperature field at interior nodes of the domain D t . 

If the error of specification of the input temperatures is known: 6 = otj [ , where at, j is the rms error of the 
\t=l j=l / 

function To(x, t) at x = x/, t = tj, then the principle of the residual [1] can be used to determine the best approximation: 

21112 

Here TI! K (l = ~ ;  j = ~ is the temperature on the line y = c, which is obtained by solving the direct problem 
in the domain D = D 1 U D 2 with specification of the boundary conditions (1.3)-(1.5) and a known temperature TwJt (l = 
0"5S77-E; j = TSST7"I~I) on the line y = 0. The values of T J / a re  determined by solving the inverse problem in the domain D I. 
The iterative solution of Eq. (2.12) is carried out by the method of chords. Once the temperature field in D has been 
determined, the heat flux density qw(X, t) is determined from the finite-difference analog of condition (1.7). 
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3. Results of Numerical  Calculations. The algorithm described in this article has been tested numerically in the 

solution of a model problem. A FORTRAN program for the IBM PC/AT-386 computer was written for this purpose. The 

sample medium was a graphitic carbon material, mark I~G-0, whose thermophysical characteristics X x (T), ky (T), and C(T) 

were taken from [16]. Adiabatic conditions held at the boundaries of the domain x = 0, x -- b, and y = d. Initial data on the 

temperature at the interior line y = c, which is needed to solve the IHC problem, and the temperature at the boundary y = 0 

were obtained by solving the direct heat-conduction problem in the domain D by the decoupling method with the heat flux 

density at the boundary y = 0 specified according to the law qw (x, 0 = Axt (A = cons0. The resulting functional dependence 

qw (x, t) and the temperature T w (x, t) determined from the solution of the direct heat-conduction problem were then adopted 

as an "exact" solution of the two-dimensional IHC boundary-value problem. The following values of the parameters were used 

in the numerical calculations: b = 10 -2  m; c = 0.5.10 -2 m; d = 10 -2  m; t b = 0; tf = 5 sec; T b = 300 K; A = 108; 

h x = 0.2.10 -2  m ; h y  = 0.5-10 -3 m ; h  t = 0 . 1 s e c ; C  M = 0; e = 0 .005;k  1 = 1 ; k  2 = 1. 

Figures 2 and 3 show the distributions of the temperature and the heat flux density in the longitudinal x-direction at 

the boundary y = 0 at t = 0, 1, 2, 3, 4, and 5 s (curves 1-6, respectively). The solid curves represent the exact solution of 

the two-dimensional IHC problem, and the dashed curves represent the solution obtained by the one-dimensional IHC algorithm 

[12] in different x cross sections. It is evident from the figures that the one-dimensional IHC algorithm produces large errors 

in the determination of  T w (x, t) and qw (x, t), indicating that two-dimensional IHC algorithms must be used. 

Figures 4 and 5 show the results of  solving the IHC problem by means of  the two-dimensional algorithm. Here curves 

1 give the exact solution of  the IHC problem, and curves 2 represent the solution obtained by the regularization algorithm on 

the basis of  the unperturbed temperature T c (x, t), corresponding to the application of direct numerical methods (a  = 0). Good 

agreement is observed between the exact and numerical solutions. When the number of  temporal and spatial points in the 

domain D 1 is doubled (M = 100, L = 21), the solution of the IHC problem remains essentially unchanged, but the computing 

time increases from 2 rain to 4 min. 
It is important to test the algorithm in the presence of perturbations of the initial data. This is done by superimposing 

on the temperature T c (x, t) perturbations having a sawtooth distribution and amplitudes equal to 1% of the maximum 
temperature. Curves 3 and 4 represent the solution obtained by direct numerical methods and by the regularization algorithm. 

It is evident from the figures that the direct numerical solution exhibits a distinctly unstable behavior until the heat flux density 

becomes negative. The regularization solution, on the other hand, is stable and yields good agreement with the exact solution. 

To obtain a solution with smaller temporal and spatial steps in D 1 without sacrificing computer storage, it is 

recommended that the duration of the process and the geometrical domain D 1 be partitioned into several smaller time intervals 

and geometrical subdomains, in which the IHC problem is then solved in succession. 
The numerical calculations demonstrate the efficiency and practicability of the proposed computational algorithm and 

program. The computing time for one version of the problem with perturbed initial data does not exceed 5 min on an IBM 

PC/AT-386 computer. One of  the advantages of  the proposed algorithm is its universality, which means that all possible 

physicochemical processes liable to occur in a heated reacting material can be taken into account on the basis of more complete 

mathematical models than those used here. 
This work has received financial support from the Russian Fundamental Research Foundation (Project Code 93-013- 

17286). 
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